b)
Xét \(\overline{2014xy}=201400+\overline{xy}\)
= 201396 + 4 + \(\overline{xy}\)
Để \(\overline{2014xy}⋮12\)
<=> \(\overline{xy}+4⋮12\)
| \(\overline{xy}+4\) | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 |
| \(\overline{xy}\) | 08 | 20 | 32 | 44 | 56 | 68 | 80 | 92 |
a)
\(7x+4y⋮37\)
<=> \(14\left(7x+4y\right)⋮37\)
<=> \(98x+56y⋮37\)
<=> \(111x-13x+74y-18y⋮37\)
Mà \(111x⋮37;74y⋮37\)
<=> \(13x+18y⋮37\)


