Câu trả lời:
\(\Rightarrow C=1+\left[\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}-\frac{2x\sqrt{x}-\sqrt{x}+x}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}\right].\frac{x-\sqrt{x}}{2\sqrt{x}-1}\)
\(=1+\left[\frac{\left(2\sqrt{x}-1\right)\left(1+\sqrt{x}+x\right)-\left(2x\sqrt{x}-\sqrt{x}+x\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}\right].\frac{x-\sqrt{x}}{2\sqrt{x}-1}\)
\(=1+\left[\frac{2\sqrt{x}+2x+2x\sqrt{x}-1-\sqrt{x}-x-2x\sqrt{x}+\sqrt{x}-x}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}\right].\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)
\(=1+\left[\frac{2\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}\right].-\frac{\sqrt{x}\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\)
\(=1-\frac{\sqrt{x}}{1+\sqrt{x}+x}\) \(=\frac{1+\sqrt{x}+x-\sqrt{x}}{1+\sqrt{x}+x}=\frac{1+x}{1+\sqrt{x}+x}\)