Vì a,b,c,d có vai trò như nhau
Giả sử \(a\ge b\ge c\ge d\)
=>\(a^2\ge b^2\ge c^2\ge d^2\)
=>\(\frac{1}{a^2}\le\frac{1}{b^2}\le\frac{1}{c^2}\le\frac{1}{d^2}\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}\le\frac{1}{d^2}+\frac{1}{d^2}+\frac{1}{d^2}+\frac{1}{d^2}\)
=>\(1\le4.\frac{1}{d^2}\)
=>\(\frac{1}{4}\le\frac{1}{d^2}\)
=>\(4\ge d^2\)
=>\(2\ge d\)
Vì d là số tự nhiên khác 0
=>d=1,2
-Xét d=1
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{1^2}=1\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+1=1\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=0\)
Vì\(\frac{1}{a^2}>0,\frac{1}{b^2}>0,\frac{1}{c^2}>0=>\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}>0\)
=>Vô lí
-Xét d=2
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{2^2}=1\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{4}=1\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{3}{4}\)
Vì \(a\ge b\ge c\)
=>\(a^2\ge b^2\ge c^2\)
=>\(\frac{1}{a^2}\le\frac{1}{b^2}\le\frac{1}{c^2}\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le\frac{1}{c^2}+\frac{1}{c^2}+\frac{1}{c^2}\)
=>\(\frac{3}{4}\le3.\frac{1}{c^2}\)
=>\(\frac{1}{4}\le\frac{1}{c^2}\)
=>\(4\ge c^2\)
=>\(2\ge c\)
Vì \(c\ge d=>c\ge2\)
=>c=2
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{3}{4}\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{2^2}=\frac{3}{4}\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{4}=\frac{3}{4}\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}=\frac{2}{4}\)
Vì \(a\ge b\)
=>\(a^2\ge b^2\)
=>\(\frac{1}{a^2}\le\frac{1}{b^2}\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}\le\frac{1}{b^2}+\frac{1}{b^2}\)
=>\(\frac{2}{4}\le\frac{2}{b^2}\)
=>\(\frac{1}{4}\le\frac{1}{b^2}\)
=>\(4\ge b^2\)
=>\(2\ge b\)
Vì \(b\ge c=>b\ge2\)
=>b=2
=>\(\frac{1}{a^2}+\frac{1}{b^2}=\frac{2}{4}\)
=>\(\frac{1}{a^2}+\frac{1}{2^2}=\frac{2}{4}\)
=>\(\frac{1}{a^2}+\frac{1}{4}=\frac{2}{4}\)
=>\(\frac{1}{a^2}=\frac{1}{4}\)
=>\(a^2=4=>a=2\)
Vậy a=2,b=2,c=2,d=2