Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, đáy nhỏ AB = n, đáy lớn CD = m (m, n là các số thực dương, m > n). Các cạnh bên thỏa mãn SA = SB, SC = SD. Gọi O là giao điểm hai đường chéo AC và BD. Lấy điểm I trên đoạn SO sao cho IS/IO = k. Gọi (alpha) là mặt phẳng đi qua AI và song song với CD. Tìm điều kiện của k để thiết diện của hình chóp S.ABCD với mặt phẳng (alpha) là một hình chữ nhật.
\(f\left(n\right)=\left(n^2+n+1\right)^2+1\). Xét dãy \(\left(u_n\right)\) sao cho : \(\left(u_n\right)=\dfrac{f\left(1\right)\cdot f\left(3\right)\cdot f\left(5\right)...\cdot f\left(2n-1\right)}{f\left(2\right)\cdot f\left(4\right)\cdot...\cdot f\left(2n\right)}\). Tính \(\lim\limits_{n\sqrt{u_n}}\)