1) \(\dfrac{x+2}{x-2}+\dfrac{2}{x+2}=\dfrac{x^2}{x^2-4}\)
\(\Leftrightarrow\dfrac{x+2}{x-2}+\dfrac{2}{x+2}-\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}\)=0
\(\Leftrightarrow\dfrac{\left(x+2\right)^2+2\left(x-2\right)-x^2}{\left(x-2\right)\left(x+2\right)}\)=0
\(\Leftrightarrow\dfrac{x^2+2x2+2^2+2x-4-x^2}{\left(x-2\right)\left(x+2\right)}\)=0
\(\Leftrightarrow\dfrac{x^2-x^2+4x+2x+4-4}{\left(x-2\right)\left(x+2\right)}\)=0
\(\Leftrightarrow\dfrac{6x}{\left(x-2\right)\left(x+2\right)}\)=0
\(\Leftrightarrow6x=0\)
\(\Rightarrow x=0\)
2) \(\dfrac{1}{x-6}-\dfrac{2}{6+x}=\dfrac{3x+6}{x^2-36}\)
\(\Leftrightarrow\dfrac{1}{x-6}-\dfrac{2}{x+6}-\dfrac{\left(3x+6\right)}{\left(x-6\right)\left(x+6\right)}\)=0
\(\Leftrightarrow\dfrac{1\left(x+6\right)-2\left(x-6\right)-\left(3x+6\right)}{\left(x-6\right)\left(x+6\right)}\)=0
\(\Leftrightarrow\dfrac{x+6-2x+12-3x-6}{\left(x-6\right)\left(x+6\right)}\)=0
\(\Leftrightarrow\dfrac{x-2x-3x+6-6+12}{\left(x-6\right)\left(x+6\right)}\)=0
\(\Leftrightarrow\dfrac{-4x+12}{\left(x-6\right)\left(x+6\right)}\)=0
\(\Leftrightarrow-4x+12=0\)
\(\Leftrightarrow-4x=12\)
\(\Rightarrow x=3\)