Cho đường tròn tâm O bán kính R, hai điểm C và D thuộc đường tròn, B là điểm chính giữa cung nhỏ CD . Kẻ đường kính BA, trên tia đối của BA lấy điểm S , nối S với C cắt (O) tại M , MD cắt AB tại K, MB cắt AC tại H.
a) Chứng minh góc BMD bằng góc BAC. Từ đó suy ra tứ giác AMHK nội tiếp
b) Chứng minh HK // CD
Cho tam giác ABC với ba góc nhọn, đường cao AD. Gọi M là điểm đối xứng với D qua AB , N là điểm đối xứng với D qua AC. Gọi E, F thao thứ tự là giao điểm của MN với AC, AB.
a) Chứng minh 5 điểm A , F , D , C, N cùng thuộc một đường tròn.
b) Chứng minh AD, CF, BE đồng qui