HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
cho a,b,c ≥ 0 thỏa mãn a2 + b2 + c2 ≤ 8. Tìm GTLN của
\(M=4\left(a^3+b^3+c^3\right)-\left(a^4+b^4+c^4\right)\)
cho -1 ≤ a,b,c ≤ 1 va 1 + 2abc ≥ a2 + b2 +c2. cmr: 1 + 2a2b2c2 ≥ a4 + b4 + c4
cho a,b,c khác 0 thỏa mãn \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\). Tính giá trị biểu thức \(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
tìm m để pt \(\left(\sqrt{5m^2-2m-2}+m-1\right)\left(x+1\right)^3+x^2-x-3=0\) có ít nhất 1ngiệm thuộc (-1;0)
có bao nhiêu số nguyeen m để pt \(2x^2-6x=\left(x+1\right)\sqrt{4x+m}+m\) có đúng 1 nghiệm
tìm m để pt \(\sqrt{x^2+4x+8}+\sqrt{x^2-6x+10}=m\) có nghiệm
cho a,b,c> 0 phân biệt thỏa mãn \(a+\dfrac{2}{b}=b+\dfrac{2}{c}=c+\dfrac{2}{a}\). Tính P = abc