được 1 lần trong đời đẹp z thoi á e :)))
\(\dfrac{1}{a+1}+\dfrac{1}{b+1}=\dfrac{1}{2}\left(a,b\ne-1\right)\\ \Rightarrow2\left(a+b+2\right)=\left(a+1\right)\left(b+1\right)\\ \Rightarrow2a+2b+4=ab+a+b+1\\ \Rightarrow a+b-ab+3=0\\ \Rightarrow\left(b-1\right)-a\left(b-1\right)=-4\\ \Rightarrow\left(a-1\right)\left(b-1\right)=4=1\cdot4=2\cdot2\)
| \(a-1\) | 1 | 4 | 2 |
| \(b-1\) | 4 | 1 | 2 |
| \(a\) | 2 | 5 | 3 |
| \(b\) | 5 | 2 | 3 |
Vậy \(\left(a;b\right)=\left(2;5\right);\left(5;2\right);\left(3;3\right)\)