HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(a,A=\dfrac{4\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{4}{x+4}\\ b,B=\dfrac{x+4+x+2x-4}{x\left(x+4\right)}=\dfrac{4x}{x\left(x+4\right)}=\dfrac{4}{x+4}=A\)
\(=\dfrac{2}{\left|2-\sqrt{5}\right|}-\dfrac{2}{\left|2+\sqrt{5}\right|}=\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}\\ =\dfrac{2\sqrt{5}+4-2\sqrt{5}+4}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}=\dfrac{8}{1}=8\)
\(a,A=\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25+\left(y^2-2y+1\right)+2\\ A=\left(x-2y\right)^2+10\left(x-2y\right)+5+\left(y-1\right)^2+2\\ A=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=2y-5\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
\(b,\Leftrightarrow3x^3+10x^2-5+n=\left(3x+1\right)\cdot a\left(x\right)\)
Thay \(x=-\dfrac{1}{3}\Leftrightarrow3\left(-\dfrac{1}{27}\right)+10\cdot\dfrac{1}{9}-5+n=0\)
\(\Leftrightarrow-\dfrac{1}{9}+\dfrac{10}{9}-5+n=0\\ \Leftrightarrow-4+n=0\Leftrightarrow n=4\)
\(c,\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\\ \Leftrightarrow2n\left(n-2\right)+5\left(n-2\right)+3⋮n-2\\ \Leftrightarrow n-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow n\in\left\{-1;1;3;5\right\}\)
Ta có AM,DN lần lượt là phân giác \(\Delta ABD,\Delta ADC\)
\(\Rightarrow\dfrac{MD}{MB}=\dfrac{AD}{AB};\dfrac{NA}{NC}=\dfrac{AD}{DC}\)
Mà \(AB=CD\left(gt\right)\\ \Rightarrow\dfrac{MD}{MB}=\dfrac{NA}{NC}\Rightarrow\dfrac{MD+AB}{MB}=\dfrac{NA+NC}{NC}\\ \Rightarrow\dfrac{BD}{MB}=\dfrac{CA}{NC}\)
Theo đlí Talet đảo ta được MN//BC
\(a,\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-5< 0\\x+2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-5>0\\x+2< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 5\\x>-2\end{matrix}\right.\\\left\{{}\begin{matrix}x>5\\x< -2\end{matrix}\right.\end{matrix}\right.\Rightarrow-2< x< 5\\ \Rightarrow x\in\left\{-1;0;1;2;3;4\right\}\\ b,\Rightarrow5< x^2< 14\\ \Rightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2-36\ge0\\x^2-81\le0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2-36\le0\\x^2-81\ge0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow36\le x^2\le81\\ \Leftrightarrow-6\le x\le9\)
Nhận thấy \(x^3-x=x\left(x^2-1\right)=x\left(x-1\right)\left(x+1\right)\)
\(\dfrac{3}{x}-\dfrac{x}{x-1}-\dfrac{x^2}{x+1}-\dfrac{x^2-3}{x^3-x}\\ =\dfrac{3x^2-3-x^3-x^2-x^4+x^3-x^2+3}{x\left(x-1\right)\left(x+1\right)}\\ =\dfrac{-x^4+x^2}{x\left(x-1\right)\left(x+1\right)}=\dfrac{-x^2\left(x-1\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}=-x\)
\(HPT\Leftrightarrow\left\{{}\begin{matrix}3x^2+3y^3=15\\2x^2-3y^3=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x^2=20\\x^2+y^3=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2=4\\y^3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\\y=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(2;1\right);\left(-2;1\right)\)