Học tại trường Chưa có thông tin
Đến từ Hà Nội , Chưa có thông tin
Số lượng câu hỏi 13
Số lượng câu trả lời 82
Điểm GP 0
Điểm SP 24

Người theo dõi (4)

Đang theo dõi (2)

Thúy Vy
Hà Linh

Câu trả lời:

Số có dạng \(a^{4k+2}\)thì tận cùng cũng chính là tận cùng của \(a^2\)

Do đó ta coi  \(\overline{X}=2^2+3^2+4^2+...+104^2\)là một số có tận cùng giống tận cùng của \(X.\)

Bài toán phụ : chứng minh \(1^2+2^2+3^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\) với \(n>1\)bằng phương pháp quy nạp.

Coi tồn tại một số \(n\)thỏa mãn đẳng thức trên.

\(\Rightarrow1^2+2^2+3^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

Ta cần chứng minh đẳng thức cũng thỏa mãn với \(n+1.\)

Có : \(1^2+2^2+3^2+...+n^2+\left(n+1\right)^2\)

\(=\frac{n\left(n+1\right)\left(2n+1\right)}{6}+\left(n+1\right)^2\)

\(=\frac{n\left(n+1\right)\left(2n+1\right)+6\left(n+1\right)^2}{6}\)

\(=\frac{\left(n^2+n\right)\left(2n+1\right)+6\left(n^2+2n+1\right)^2}{6}\)

\(=\frac{2n^3+3n^2+n+6n^2+12n+6}{6}\)

\(=\frac{2n^3+9n^2+13n+6}{6}\)

\(=\frac{\left(2n^3+2n^2\right)+\left(7n^2+7n\right)+\left(6n+6\right)}{6}\)

\(=\frac{2n^2\left(n+1\right)+7n\left(n+1\right)+6\left(n+1\right)}{6}\)

\(=\frac{\left(n+1\right)\left(2n^2+7n+6\right)}{6}\)

\(=\frac{\left(n+1\right)\left[\left(2n^2+4n\right)+\left(3n+6\right)\right]}{6}\)

\(=\frac{\left(n+1\right)\left[2n\left(n+2\right)+3\left(n+2\right)\right]}{6}\)

\(=\frac{\left(n+1\right)\left(n+2\right)\left(2n+3\right)}{6}\)

\(=\frac{\left(n+1\right)\left[\left(n+1\right)+1\right]\left[2\left(n+1\right)+1\right]}{6}\)

\(\Rightarrow\)Đẳng thức thỏa mãn với mọi \(n\in N\)

Quay trở lại bài toán chính, có :

\(\overline{X}=2^2+3^2+4^2+...+104^2\)

\(=\left(1^2+2^2+3^2+4^2+...+104^2\right)-1^2\)

\(=\frac{104.\left(104+1\right)\left(2.104+1\right)}{6}-1\)

\(=\left(...0\right)-1\)

\(=\left(...9\right)\)

\(\overline{X}\)có tận cùng là 9 nên \(X\)có tận cùng là 9.

Vậy...