1) (a – b + c) – (a + c) = -b
Xét VT: (a – b + c) – (a + c) = a -b +c -a -c
= (a -a) + (c-c) -b
= -b = VP
⇒ ĐPCM
2) (a + b) – (b – a) + c = 2a + c
Xét VT: (a + b) – (b – a) + c = a +b -b +a +c
= (a +a) + (b-b) +c
= 2a +c = VP
⇒ ĐPCM
3) - (a + b – c) + (a – b – c) = -2b
Xét VT: - (a + b – c) + (a – b – c) = -a -b +c +a -b -c
= ( -a+a) - (b+b) + (c-c)
= -2b = VP
⇒ ĐPCM
4) a(b + c) – a(b + d) = a(c – d)
Xét VT: a(b + c) – a(b + d) = ab +ac -ab -ad
= (ab -ab) + a(c -d)
= a.(c-d) = VP
⇒ ĐPCM
5) a(b – c) + a(d + c) = a(b + d)
Xét VT: a(b – c) + a(d + c) = ab -ac +ad +ac
= ( -ac +ac) + a(b+d)
= a( b+d) = VP
⇒ ĐPCM
6) a.(b – c) – a.(b + d) = -a.( c + d)
Xét VT: a.(b – c) – a.(b + d) = ab - ac -ab -ad
= (ab -ab) - a(c +d)
= -a.(c+d) = VP
⇒ ĐPCM
7) (a + b).( c + d) – (a + d).( b + c) = (a – c). (d – b)
Xét VT: (a + b).( c + d) – (a + d).( b + c) = ac +ad +bc +bd -ab -ac -bd -cd
= (ac -ac) + (bd-bd) +ad -ab -cd +bc
= a(d-b) - c(d-b)
= (d-b).(a-c) = VP
⇒ ĐPCM