Câu trả lời:
Ta có: \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\left(1\right).\)
Nhân thêm cả tử và mẫu của (1) với a hoặc b và b;c
Từ (1) Ta lại có: \(\frac{bz-cy}{a}=\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}\)
\(=\frac{abz+acy+bcx+baz+cay+cbx}{a^2+b^2+c^2}=0\)
\(\Rightarrow\hept{\begin{cases}bx-cy=0\Rightarrow bz=cy\Rightarrow\frac{y}{b}=\frac{z}{c}\\ay-bx=0\Rightarrow ay=bx\Rightarrow\frac{y}{b}=\frac{x}{a}\end{cases}}\)
Vậy \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(đpcm\right)\)
CHÚC BẠN HỌC TỐT