Cho \(\Delta\)ABC có AD là đường phân giác
a)Cho AC=10cm,BD=6cm,DC=8cm.Tính AB
b)Qua D kẻ đường thẳng song song với AB cắt AC tại E.Chứng minh:AC.AE=AB.EC
c)Gọi I là trung điểm của AB,AD cắt EI tại P,BE cắt ID tại Q.Chứng minh:\(\dfrac{PE}{PI}=\dfrac{QD}{QE}\)và \(\Delta\)IPQ đồng dạng \(\Delta\)IED
Cho \(\Delta\)ABC nhọn (AB<AC),các đường cao AD,BE,CH cắt nhau tại H.Chứng minh:
1)AE.AC=AF.AB
2)\(\Delta\)AEF đồng dạng \(\Delta\)ACB
3)\(\Delta\)FHE đồng dạng \(\Delta\)BHC
4)DH là phân giác của góc EDF
5)BF.BA+CE.CA=\(^{BC^2}\)
6)Gọi K là giao điểm của EF và BC.Chứng minh:KE.KF=KB.KC
Cho \(\Delta\)ABC vuông tại A,kẻ đường cao AH
1)Chứng minh:\(\Delta\)ABC đồng dạng \(\Delta\)HAC
2)Cho AB=6cm,AC=8cm.Tính BC,AH
3)Từ H kẻ HE\(\perp\)AC.Chứng minh:\(^{HE^2}\)=EA.EC
4)Gọi I là trung điểm của AH,EI cắt AB tại F.Chứng minh:\(^{AH^2}\)=FA.FB+EA.EC