HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Ta có : ƯCLN(a,b)=5 => a = 5m , b = 5n và ƯCLN(m,n)=1 với ( a > b ) => m > n
=> a.b=5m.5n=25.mn=300
=> mn=300 : 25 = 12
Ta có bảng liệt kê sau :
\(\left(\left(\frac{2}{3}\right)^x\right)^3=\frac{27}{8}\Rightarrow\left(\left(\frac{2}{3}\right)^x\right)^3=\left(\frac{3}{2}\right)^3\Rightarrow\left(\frac{2}{3}\right)^x=\frac{3}{2}\Rightarrow\left(\frac{2}{3}\right)^x=\left(\frac{2}{3}\right)^{-1}\Rightarrow x=-1\)
23/27 > 22/29
A=(x+1)(x+2)(x+3)(x+4)+1
= [(x+1)(x+4)] [(x+2)(x+3)]+1
=(x^2+5x+5)(x^2+5x+6)+1
Đặt t =x^2+5x+5
=> A=t(t+1)+1=t^2+t+1 = (t+1)^2 >= 0 (đpcm)
a, \(x^2-xy+x-y=x\left(x-y\right)+\left(x-y\right)=\left(x-y\right)\left(x+1\right).\)
\(b,3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)
41 + 2 + 4 + 576
=43 + 580
= 623
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x.\left(x+2\right)}=\frac{20}{41}\)
=> \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x.\left(x+2\right)}=2.\frac{20}{41}\)
=> \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{40}{41}\)
=> \(1-\frac{1}{x+2}=\frac{40}{41}\)
=> \(\frac{1}{x+2}=1-\frac{40}{41}\)
=> \(\frac{1}{x+2}=\frac{1}{41}\)
=> \(x+2=41\)
=> \(x=41-2=39\)