\(a,\sqrt{x}+\sqrt{x-5}\le\sqrt{5}\)
ĐKXĐ: \(\sqrt{x}\ge0;\sqrt{x-5}\ge0=>x\ge5\)
\(=>\left(\sqrt{x}+\sqrt{x-5}\right)^2\le\left(\sqrt{5}\right)^2\)
\(=>\left(\sqrt{x}\right)^2+2.\sqrt{x}.\sqrt{x-5}+\left(\sqrt{x-5}\right)^2\le5\)
\(=>x+2.\sqrt{x.\left(x-5\right)}+x-5\le5\)
\(=>2x+2\sqrt{x^2-5x}-5\le5=>2x+2\sqrt{x^2-5x}-10\le0\)
\(=>2\left(x+\sqrt{x^2-5x}\right)\le10=>x+\sqrt{x^2-5x}\le5\)
\(=>\sqrt{x^2-5x}\le5-x=>\left(\sqrt{x^2-5x}\right)^2\le\left(5-x\right)^2\)
\(=>x^2-5x\le25-10x+x^2=>25-10x+x^2-x^2+5x\ge0\)
\(=>25-5x\ge0=>5x\le25=>x\le5\)
Mà theo ĐKXĐ: \(x\ge5\) nên x chỉ có thể bằng 5
Vậy x=5
\(b,\frac{x+3}{x+2}<\frac{x+4}{x+5}=>\frac{\left(x+3\right)\left(x+5\right)}{\left(x+2\right)\left(x+5\right)}<\frac{\left(x+4\right)\left(x+2\right)}{\left(x+5\right)\left(x+2\right)}\) (ĐKXĐ: \(x\notin\left\{-5;-2\right\}\))
\(=>\left(x+3\right)\left(x+5\right)<\left(x+4\right)\left(x+2\right)=>x^2+8x+15\)\(<\)\(x^2+6x\)\(+8\)
\(=>x^2+6x+8-x^2-8x-15>0=>-2x-7>0=>-2x>7=>x>-\frac{7}{2}\)
\(c,3^{x^2-x-6}<1=3^0=>x^2-x-6<0\)
\(=>x^2+2x-3x-6<0=>x\left(x+2\right)-3\left(x+2\right)<0=>\left(x+2\right)\left(x-3\right)<0\)
Vì x+2 > x-3
=>x+2 > 0 và x-3 < 0
=>x > -2 và x < 3
=>-2 < x < 3
Vậy.............