Chủ đề:
§1. Bất đẳng thứcCâu hỏi:
Tìm giá trị nhỏ nhất :
A= \(x^2y^2+2x^2+24xy+16x+191\)
B=\(a^2+b^2+ab-3a-3b+2014\)
1. giải các phương trình :
a/\(\sqrt{6x^2-12x+7}=x^2-2x\)
\(\frac{2}{\sqrt{3+x}}=\frac{\sqrt{3+x}}{x-1}\)
c/\(x^2+\sqrt{-x-1}=4+\sqrt{-x-1}\)
d/\(\frac{3x^2+1}{\sqrt{x-1}}=\frac{4}{\sqrt{x-1}}\)
e/\(\sqrt{-x^2+3x+4}=2x^2-6x+2\)
f/\(\frac{\sqrt{4x^2+7x-2}}{x+2}=\sqrt{2}\)
Cho tam giác ABC.Các điểm D,E,G được xác định bởi hệ thức :\(2\overrightarrow{AD}=\overrightarrow{AB},\overrightarrow{AE}=2\overrightarrow{CE},2\overrightarrow{GD}=\overrightarrow{GC}\)
a, Chứng minh BE//CD.
b/Gọi M là trung điểm của BC.Chúng minh A,G,M thẳng hàng.