Học tại trường Chưa có thông tin
Đến từ Phú Thọ , Chưa có thông tin
Số lượng câu hỏi 27
Số lượng câu trả lời 1531
Điểm GP 354
Điểm SP 2495

Người theo dõi (59)

Van A Pham
Duy Đạt
Lê Quỳnh Như
Pinky
rginhh

Đang theo dõi (4)


Câu trả lời:

\(a,\dfrac{x+1}{3}+\dfrac{1}{2}=\dfrac{x-1}{6}-1\\ \Leftrightarrow\dfrac{2\left(x+1\right)}{6}+\dfrac{3}{6}-\dfrac{x-1}{6}+\dfrac{6}{6}=0\\ \Leftrightarrow2x+2+3-x+1+6=0\\ \Leftrightarrow x+12=0\\ \Leftrightarrow x=-12\\ b,4x^2-1-x\left(2x-1\right)=0\\ \Leftrightarrow\left(2x-1\right)\left(2x+1\right)-x\left(2x-1\right)=0\\ \Leftrightarrow\left(2x-1\right)\left(2x+1-x\right)=0\\ \Leftrightarrow\left(2x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-1\end{matrix}\right.\)

c, ĐKXĐ:\(x\ne\pm3\)

\(\dfrac{x+3}{x-3}+\dfrac{x-3}{x+3}=\dfrac{x^2+2x}{x^2-9}+1\\ \Leftrightarrow\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}-\dfrac{x^2+2x}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=0\\ \Leftrightarrow\dfrac{x^2+6x+9+x^2-6x+9-x^2-2x-x^2+9}{\left(x-3\right)\left(x+3\right)}=0\\ \Rightarrow-2x+27=0\\ \Leftrightarrow x=\dfrac{27}{2}\left(tm\right)\)

\(d,\left(x^2+x-1\right)\left(x^2+x+3\right)=5\\ \Leftrightarrow\left(x^2+x-1\right)\left[\left(x^2+x-1\right)+4\right]=5\left(x^2+x-1\right)^2+4\left(x^2+x-1\right)-5=0\\ \Leftrightarrow\left[\left(x^2+x-1\right)^2+5\left(x^2+x-1\right)\right]-\left[\left(x^2+x-1\right)+5\right]=0\Leftrightarrow\left(x^2+x-1\right)\left(x^2+x-1+5\right)-\left(x^2+x-1+5\right)=0\\ \Leftrightarrow\left(x^2+x-1+5\right)\left(x^2+x-1-1\right)=0\\ \Leftrightarrow\left(x^2+x+4\right)\left(x^2+x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{15}{4}=0\\\left(x^2+2x\right)-\left(x+2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}=0\left(vô.lí\right)\\\left(x-1\right)\left(x+2\right)=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Câu trả lời:

D