Câu trả lời:
\(\Delta=\left(b^2+c^2-a^2\right)^2-4b^2c^2\)
\(=\left(b^2+c^2-a^2-2bc\right)\left(b^2+c^2-a^2+2bc\right)\)
\(=\left[\left(b-c\right)^2-a^2\right].\left[\left(b+c\right)^2-a^2\right]\)
\(=\left(b-c+a\right)\left(b-c-a\right)\left(b+c-a\right)\left(b+c+a\right)\)
Trong \(\Delta ABC\) ta có:
\(\hept{\begin{cases}a+b+c\\b+c-a\\b-c+a\end{cases}>0}\)và \(b-\left(c+a\right)< 0\)
\(\Rightarrow\Delta< 0\)(đpcm)