HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Viết chương trình nhập vào 2 số nguyên, tìm số lớn nhất của 2 số. ( Sử dụng for - do ).
\(P=\frac{1}{x^3+y^3}+\frac{1}{xy}\)
Ta có:
\(x+y=1\Rightarrow\left(x+y\right)^3=1\)
\(\Rightarrow x^3+y^3+3xy\left(x+y\right)=1\)
\(\Rightarrow x^3+y^3+3xy=1\)
\(\Rightarrow P=\frac{x^3+y^3+3xy}{x^3+y^3}+\frac{x^3+y^3+3xy}{xy}\)\(=4+\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\left(1\right)\)
Áp dụng Bđt Cô si ta có:
\(\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\ge2\sqrt{\frac{3xy}{x^3+y^3}\cdot\frac{x^3+y^3}{xy}}=2\sqrt{3}\)
\(\Rightarrow P\ge4+2\sqrt{3}\)(Đpcm)
Dấu = khi \(\hept{\begin{cases}x+y=1\\x^3+y^3=\sqrt{3xy}\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=1\\1-3xy=\sqrt{3xy}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=1\\3\sqrt{xy}=\frac{-1+\sqrt{5}}{2}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x+y=1\\xy=\frac{6-2\sqrt{5}}{12}\end{cases}}\)
\(\Leftrightarrow x^2-x+\frac{6-2\sqrt{5}}{12}=0\)\(\Leftrightarrow x,y=\frac{1\pm\sqrt{\frac{2\sqrt{5}-3}{3}}}{2}\)
Ta có: 8^7-2^17=(2^3)^7-2^17=2^21-2^17=2^17.(2^3-1)=2^17.7 chia hết cho 7 (1)
Mặt khác: 8^7-2^17=2.(4^7-2^16) chia hết cho 2 (2)
Từ (1)(2)=> 8^7-2^17 chia hết cho 14 vì (2,7)=1.
Lời giải: Giải bất phương trình
Nghiệm của bất phương trình được biểu diễn trên trục số
\(x\in\left(-\sqrt{35};-5\right)U\left(-\sqrt{15};-\sqrt{5}U\right)\left(\sqrt{5}\sqrt{15}\right)U\left(\sqrt{35};5\right)\)
giúp mình nha mọi người mình đang cần gấp
số đó là
11 và 12
ai k mình
mình k laijc ho