HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(b\)) \(\left(y+1\right)+\left(y+2\right)+\left(y+3\right)+......+\left(y+50\right)=1425\)
\(< =>50y+\left(1+49\right)+\left(2+48\right)+.....+\left(24+26\right)+25+50=1425\)
\(< =>50y+24\left(1+49\right)+75=1425\)
\(< =>50y+1275=1425\)
\(< =>50y=150\)
\(=>y=3\)
a thấy r :v
\(x=2\left(TM\right)\) mà ;v?
\(a\)) ĐK \(x>-1\)
\(\sqrt{2x-1}=\sqrt{x+1}\)
<=>\(2x-1=x+1\)
<=>\(x=2\)\(\left(TM\right)\)
Vậy \(x=2\)
\(b\)) ĐK \(x\) ≤ 2
\(\sqrt{4-x^2}-x+2=0\)
<=> \(\sqrt{4-x^2}=x-2\)
<=>\(4-x^2=x^2-4x+4\)
<=>\(2x^2-4x=0\)
<=>\(2x\left(x-2\right)=0\)
<=>\(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{0;2\right\}\)
Bài \(1\)
\(a\)) \(A=\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right).\sqrt{11}+3\sqrt{22}\)
\(A=\left(3\sqrt{11}-3\sqrt{2}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
\(A=3.11-3\sqrt{22}-11+3\sqrt{22}\)
\(A=22\)
\(b\))\(B=\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)
\(B=\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}+1}+\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}+1}\)
\(B=\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(B=\left|\sqrt{3}+1\right|+\left|\sqrt{3}-1\right|\)
\(B=2\sqrt{3}\)
\(c\))\(C=\dfrac{5}{\sqrt{7}+\sqrt{2}}-\dfrac{7-\sqrt{7}}{\sqrt{7}-1}+6\sqrt{\dfrac{1}{2}}\)
\(C=\dfrac{5\left(\sqrt{7}-\sqrt{2}\right)}{5}-\dfrac{\sqrt{7}\left(\sqrt{7}-1\right)}{\left(\sqrt{7}-1\right)}+\sqrt{\dfrac{36}{2}}\)
\(C=\sqrt{7}-\sqrt{2}-\sqrt{7}+3\sqrt{2}\)
\(C=2\sqrt{2}\)
Bạn ơi chỗ \(x+y-4\)≥0 á
Biến đổi như vầy cũng được
Ta có \(xy=4=>2\sqrt{xy}=4\)
Thay vào ta được \(x+y-2\sqrt{xy}\)≥0 <=>\(\left(x+y\right)^2\)≥0 ( Luôn đúng )Vậy....
\(\dfrac{1}{x+3}+\dfrac{1}{y+3}=\dfrac{x+3+y+3}{\left(x+3\right)\left(y+3\right)}\)
\(=\dfrac{x+y+6}{3x+3y+13}\)(vì \(xy=4\))
=> \(\dfrac{x+y+6}{3x+3y+13}\)≤\(\dfrac{2}{5}\)
<=> \(5\left(x+y+6\right)\)≤\(2\left(3x+3y+13\right)\)
<=>\(6x+6y+26-5x-5y-30\)≥\(0\)
<=> \(x+y-4\)≥\(0\)
Áp dụng BĐT AM-GM \(\dfrac{a+b}{2}\)≥\(\sqrt{ab}\)
Ta có \(\dfrac{x+y}{2}\)≥\(\sqrt{xy}\)
<=>\(x+y\) ≥ 2\(\sqrt{xy}\)
=>2\(\sqrt{xy}-4\)≥\(0\)
<=> \(4-4\)≥0
<=>0≥0 ( Luôn đúng )
Vậy \(\dfrac{1}{x+3}+\dfrac{1}{y+3}\)≤\(\dfrac{2}{5}\)
à kh để ý :3