(hình bạn tự kẻ nhé)
a) \(\Delta\)ABC : BAC^ = 90o ;BCA^ = 30o => ABC^ = 180o - BAC^ -BCA^ = 180o - 90o - 30o = 60o
\(\Delta\)BHA : BHA^ = 90o ; HBA^ = 60o => BAH^ = 180o - BHA^ - HBA^ = 180o - 90o - 60o = 30o
Xét \(\Delta\)BHA và \(\Delta\)DHA :
BHA^ = DHB^ = 90o
HA chung
HB = HD
=> \(\Delta\)BHA = \(\Delta\)DHA (2 cạnh góc vuông)
=> BAH^ = DAH^ = 30o (2 cạnh tương ứng)
Ta có: BAH^ + DAH^ = BAD^ <=> 30o + 30o = BAD^ => 60o = BAD^
\(\Delta\)ABD có: ABD^ = 60o; BAD^ = 60o
Và ABD^ + BAD^ + BDA^ = 180o
BDA^ = 180o - ABD^ - BAD^ = 180o - 60o - 60o = 60o
=> \(\Delta\)ABD đều
b) Ta có: \(\Delta\)BHA = \(\Delta\)DHA (cmt)
=> AH = CE (2 cạnh tương ứng)
c) Ta có: HDE^ = ADC^ (đđ)
và HDA^ = EDC^ = 60o (đđ)
mà HDE^ + ADC^ + HDA^ + EDC^ = 360o
2 * HDE^ + 2* HDA^ = 360o
2* HDE^ + 2* 60o = 360o
2* HDE^ = 360o - 120o
2* HDE^ = 240o
HDE^ = 120o
\(\Delta\)BHA = \(\Delta\)DHA (cmt)
=> DH = DE (2 cạnh tương ứng)
=> \(\Delta\)HDE cân tại D
=> DHE^ = DEH^
\(\Delta\)HDE có: DHE^ + DEH^ + HDE^ = 180o
2* DHE^ = 180o - HDE^ = 180o - 120o = 60o
DHE^ = 30o
=> DHE^ = DCA^ = 30o
Mà DHE^ sole trong với DCA^
=> EH // AC