cho tam giác nhọn ABC, các đường cao AD và BE cắt nhau tại H. Vẽ các đường trung trực OM và ON của các cạnh BC, CA (O là giao điểm của hai đường trung trực, M và N lần lượt là trung điểm của các cạnh BC và CA). Gọi G là trọng tâm của tam giác ABC. Tính tỉ số các diện tích của hai tam giác AHG và AOG
Cho ΔABC vuông tại A ( AB<AC), có đường cao AH. Trên nữa mặt phẳng bờ là AH có chứa C vẽ hình vuông AHKE
a) gọi p là giao điểm của AC và KE. Chứng minh tam giác ABP vuông cân
b)gọi Q là đỉnh thứ 4 của hình bình hành APQB, I là giao điểm của BP và AQ. Chứng minh ba điểm H, I, E thẳng hàng
d)chứng minh HEKQ là hình thang