HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.
= 5 nha bạn
a) Xét tam giác ABO có:AB=AO=BO=R
⇒△ABO đều⇒\(\widehat{ABC}=60^0\)
Góc BAC nội tiếp chắn nửa đường tròn nên bằng 90 độ⇒\(\widehat{ACB}=30^0\)
Ta có: AB=R;BC=2R⇒AC=\(\sqrt{4R^2-R^2}=R.\sqrt{3}\)
b) Xét (O) có: BC là đường kính vuông góc với dây AD⇒BC vuông góc với AD tại trung điểm H của AD⇒BC là trung trực của AD
Xét △ADC có CH vừa là đường cao, vừa là đường trung tuyến⇒△ADC cân tại C
Mà \(\widehat{CAD}=60^0\)
Suy ra △ADC đều
c) Chứng minh tứ giác ACDE là hình thoi⇒DC//AE
Mà OA vuông góc với DC do△ADC đều⇒OA⊥OE⇒AE là tiếp tuyến của (O)
d) Ta có: BE=R;CH=\(\dfrac{3R}{2}\);BH=\(\dfrac{R}{2}\);EC=3R
Vậy EB.CH=\(\dfrac{R.3R}{2}=\dfrac{3R^2}{2}\)
BH.CE=\(\dfrac{3R.R}{2}=\dfrac{3R^2}{2}\)
Vậy \(EB.CH=BH.EC\)
Hiệu số phần bằng nhau là 5 - 1 = 4 ( phần )
Số thứ nhất là : 60 : 4 = 15
Số thứ hai là : 60 + 15 = 75
đáp số : ........
a) Để B có nghĩa thì \(\left\{{}\begin{matrix}y\ge0\\y\ne1\end{matrix}\right.\)
B=\(\left(\dfrac{1}{\sqrt{y}+1}-\dfrac{3\sqrt{y}}{\sqrt{y}-1}+3\right).\dfrac{\sqrt{y}+1}{\sqrt{y}+2}=\left[\dfrac{\sqrt{y}-1}{\left(\sqrt{y}+1\right)\left(\sqrt{y}-1\right)}-\dfrac{3\sqrt{y}\left(\sqrt{y}+1\right)}{\left(\sqrt{y}+1\right)\left(\sqrt{y}-1\right)}+\dfrac{3\left(\sqrt{y}+1\right)\left(\sqrt{y}-1\right)}{\left(\sqrt{y}+1\right)\left(\sqrt{y}-1\right)}\right].\dfrac{\sqrt{y}+1}{\sqrt{y}+2}=\left[\dfrac{\sqrt{y}-1}{\left(\sqrt{y}+1\right)\left(\sqrt{y}-1\right)}-\dfrac{3y+3\sqrt{y}}{\left(\sqrt{y}+1\right)\left(\sqrt{y}-1\right)}+\dfrac{3y-3}{\left(\sqrt{y}+1\right)\left(\sqrt{y}-1\right)}\right].\dfrac{\sqrt{y}+1}{\sqrt{y}+2}=\dfrac{\sqrt{y}-1-3y-3\sqrt{y}+3y-3}{\left(\sqrt{y}+1\right)\left(\sqrt{y}-1\right)}.\dfrac{\sqrt{y}+1}{\sqrt{y}+2}=\dfrac{\left(-2\sqrt{y}-4\right)\left(\sqrt{y}+1\right)}{\left(\sqrt{y}+1\right)\left(\sqrt{y}-1\right)\left(\sqrt{y}+2\right)}=\dfrac{-2\left(\sqrt{y}+2\right)\left(\sqrt{y}+1\right)}{\left(\sqrt{y}+1\right)\left(\sqrt{y}-1\right)\left(\sqrt{y}+2\right)}=\dfrac{-2}{\sqrt{y}-1}=\dfrac{2}{1-\sqrt{y}}\)
b) Ta có y=\(3+2\sqrt{2}\Rightarrow P=\dfrac{2}{1-\sqrt{3+2\sqrt{2}}}=\dfrac{2}{1-\sqrt{2+2\sqrt{2}+1}}=\dfrac{2}{1-\sqrt{\left(\sqrt{2}+1\right)^2}}=\dfrac{2}{1-\sqrt{2}-1}=\dfrac{2}{-\sqrt{2}}=-\sqrt{2}\)
Vậy khi x=\(3+2\sqrt{2}\) thì \(P=-\sqrt{2}\)
Số bé là :
72 : ( 5 + 1 ) = 12
Số lớn là :
72 - 12 = 60
Đáp số : ............
A B C D 45 45
Đặt AB = c; AC = b; AD = d. Áp dụng công thức tính diện tích tam giác bằng ½ tích hai cạnh nhân sin góc xen giữa ta có: S ABD = ½.AB.AD.sin BAD = ½.cd.sin 45º = ½cd.\(\dfrac{1}{\sqrt{2}}\) Tương tự: S ACD = ½bd.\(\dfrac{1}{\sqrt{2}}\) => S ABC = S ABD + S ACD = ½cd.\(\dfrac{1}{\sqrt{2}}\) + ½bd.\(\dfrac{1}{\sqrt{2}}\) = \(\dfrac{\dfrac{1}{2}d\left(b+c\right)}{\sqrt{2}}\) mà S ABC = ½bc => \(\dfrac{\dfrac{1}{2}d\left(b+c\right)}{\sqrt{2}}\) = ½bc =>\(\dfrac{\left(b+c\right)}{bc}\) = \(\dfrac{\sqrt{2}}{d}\) <=> \(\dfrac{1}{b}+\dfrac{1}{c}\) = \(\dfrac{\sqrt{2}}{d}\)\(\Rightarrowđpcm\)
360 trang