Tam giác ABC. Gọi D, E, F lần lượt là trung điểm của cạnh AB, AC, BC và M, N, P, Q theo thức tự là trung điểm của đoạn thẳng DA, AE, EF, FD
a. Chứng minh: EF là đường trung bình của tam giác ABC.
b. Chứng minh: Tứ giác DAEF, MNPQ là hình bình hành.
c. Khi tam giác ABC vuông tại A thì các tứ giác DAEF, MNPQ là hình gì?
d. Tìm điều kiện của tam giác ABC để tứ giác MNPQ là hình vuông.
Cho Δ𝐴𝐵𝐶, gọi D, E, F lần lượt là trung điểm của các cạnh AB, AC, BC; và M, N, P, Q theo thứ tự là trung điểm các đoạn thẳng DA, AE, EF, FD. a) Chứng minh: EF là đường trung bình của tam giác ABC b) Chứng minh: Các tứ giác DAEF; MNPQ có các cạnh đối song song c) Khi tam giác ABC vuông tại A thì các tứ giác DAEF; MNPQ là hình gì ? Chứng minh?