cho 2 vecto \(\overrightarrow{a},\overrightarrow{b}\) thoa man \(\left|\overrightarrow{a}\right|=4,\left|\overrightarrow{b}\right|=3\) và hai vecto \(\overrightarrow{u}=2\overrightarrow{a}+3\overrightarrow{b}\) và \(\overrightarrow{v}=-15\overrightarrow{a}+14\overrightarrow{b}\) vuông góc với nhau. Tính \(\left(\overrightarrow{a},\overrightarrow{b}\right)=???\)
cho 2 vecto \(\overrightarrow{a},\overrightarrow{b}\) thoa man \(\left|\overrightarrow{a}\right|=4,\left|\overrightarrow{b}\right|=3\) và \(\left|\overrightarrow{a}+2\overrightarrow{b}\right|=2\sqrt{7}\). Tính \(\left(\overrightarrow{a},\overrightarrow{b}\right)=????\)
Trong mặt phẳng tọa độ Oxy, cho 3 vecto \(\overrightarrow{a}\)=(-1;2), \(\overrightarrow{b}\)=(5;1) và \(\overrightarrow{c}=m\overrightarrow{a}+n\overrightarrow{b}\) với mọi m,n thuộc R. Biết rằng \(\overrightarrow{c}\) vuông góc với vecto \(\overrightarrow{v}=\overrightarrow{a}+2\overrightarrow{b}\). Tìm m,n?
Cho hình thang vuông ABCD tại A và B có các đáy AD=a, BC=3a, cạnh AB=2a.
a) Tính \(\overrightarrow{AB}.\overrightarrow{BD}\); \(\overrightarrow{BC}.\overrightarrow{BD}\) và \(\overrightarrow{AC}.\overrightarrow{BD}\)
b) Gọi I, J lần lượt trung điểm AB, CD. Tính \(\overrightarrow{AC}.\overrightarrow{IJ}\)