HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho 3 số thực dương a, b, c thoả mãn a + b + c = 1. Tìm giá trị lớn nhất của biểu thức: \(P=\frac{a}{9a^3+3b^2+c}+\frac{b}{9b^3+3c^2+a}+\frac{c}{9c^3+3a^2+b}\)
Cho diểm O thuộc miền trong của tam giác ABC. Các tia AO, BO cắt các cạnh tam giác ABC lần lượt ở G, E, F. Chứng minh rằng: \(\dfrac{OA}{AG}+\dfrac{OB}{BE}+\dfrac{OC}{CF}=2\)