1) 2. (x + 5) - x2 - 5x = 0
⇒ 2. (x + 5) - x. ( x - 5 ) = 0 ⇒ ( x - 5 ).(2 - x ) = 0
⇒ \(\left[{}\begin{matrix}x-5=0\\2-x=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Vậy x = 5 ; x= 2
2) x2 + 3x + 2 = 0 ⇒ x2 + x + 2x + 2 = 0
⇒ ( x2 + x ) + ( 2x + 2 ) = 0
⇒ x. ( x + 1 ) + 2. ( x + 1 ) = 0
⇒ ( x +1 ).(x + 2 ) = 0 ⇒ \(\left[{}\begin{matrix}x+1=0\\x+2=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)
Vậy x = -1; x = -2
3) x2 - 4x -5 = 0 ⇒ x2 + x - 5x - 5 = 0
⇒ ( x2 + x ) - ( 5x + 5 ) = 0
⇒ x. ( x + 1 ) - 5. ( x + 1 ) = 0
⇒ ( x + 1 ).( x - 5 ) = 0
⇒ \(\left[{}\begin{matrix}x+1=0\\x-5=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-1\\x=5\end{matrix}\right.\)
Vậy x = -1 ; x = 5
4) - 2x2 - 3x + 5 = 0 ⇒ -2x2 + 2x - 5x + 5 = 0
⇒ -2x. ( x - 1 ) - 5. ( x - 1 ) = 0
⇒ ( x - 1 ). ( -2x - 5 ) = 0
⇒ \(\left[{}\begin{matrix}x-1=0\\-2x-5=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=1\\-2x=5\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=1\\x=-\dfrac{5}{2}\end{matrix}\right.\)
Vậy x = 1 ; x = -\(\dfrac{5}{2}\)