HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222
kb với mik nhé
Cho \(a_1,a_2,a_3,...,a_{2n}\left(n\ge2\right)\) là các số thực thỏa mãn : \(\sum\limits^{2n-1}_{i=1}\left(a_i-a_{i+1}\right)^2=1\)
Tìm GTLN của biểu thức sau : \(\left(a_{n+1}+a_{n+2}+...+a_{2n}\right)-\left(a_1+a_2+...+a_n\right)\)
Chứng minh rằng với mọi số dương \(a_1,a_2,...,a_n\) ta luôn có :
\(a_1^{\dfrac{1}{2}}+a^{\dfrac{2}{3}}_2+...+a_n^{\dfrac{n}{n+1}}\le a_1+a_2+...+a_n+\sqrt{\dfrac{2\left(\pi^2-3\right)}{9}\left(a_1+a_2+...+a_n\right)}\)
CMR với mọi a , b , c dương ta luôn có :
\(\Sigma\dfrac{ab\sqrt{\left(a+c\right)\left(b+c\right)}}{c\left(a+b\right)}\ge\sqrt{3\left(ab+bc+ca\right)}\)
Cho các số không âm a , b , c thỏa mãn không có 2 số nào đồng thời bằng 0 và \(a^2+b^2+c^2=2\left(ab+bc+ca\right)\)
Chứng minh rằng : \(\sqrt{\dfrac{ab}{a^2+b^2}}+\sqrt{\dfrac{bc}{b^2+c^2}}+\sqrt{\dfrac{ca}{c^2+a^2}}\ge\dfrac{1}{\sqrt{2}}\)