Học tại trường Chưa có thông tin
Đến từ Chưa có thông tin , Chưa có thông tin
Số lượng câu hỏi 1
Số lượng câu trả lời 330
Điểm GP 94
Điểm SP 367

Người theo dõi (30)

Đang theo dõi (1)

Thiên Hàn

Câu trả lời:

a) Ta có:

\(a-b=c+d\)

\(\Rightarrow a-b-c-d=0\)

\(\Rightarrow2a\left(a-b-c-d\right)=0\)

\(\Rightarrow2a^2-2ab-2ac-2ad=0\)

Do đó:

\(a^2+b^2+c^2+d^2\)

\(=a^2+b^2+c^2+d^2+2a^2-2ab-2ac-2ad\)

\(=\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)\)

\(=\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2\)

Vậy với các số nguyên a, b, c, d thỏa mãn a - b = c + d thì a2 + b2 + c2 + d2 luôn là tổng của ba số chính phương

b) Ta có:

\(a+b+c+d=0\)

\(\Rightarrow a+b+c=-d\)

\(\Rightarrow a^2+ab+ac=-da\)

\(\Rightarrow bc-da=a^2+ab+ac+bc\)

\(\Rightarrow bc-da=a\left(a+b\right)+c\left(a+b\right)\)

\(\Rightarrow bc-da=\left(a+b\right)\left(a+c\right)\left(1\right)\)

Ta lại có:

\(a+b+c+d=0\)

\(\Rightarrow a+b+c=-d\)

\(\Rightarrow ac+bc+c^2=-dc\)

\(\Rightarrow ab-cd=ac+bc+c^2+ab\)

\(\Rightarrow ab-cd=c\left(a+c\right)+b\left(a+c\right)\)

\(\Rightarrow ab-cd=\left(a+c\right)\left(b+c\right)\left(2\right)\)

Ta lại có:

\(a+b+c+d=0\)

\(\Rightarrow a+b+c=-d\)

\(\Rightarrow ab+b^2+bc=-db\)

\(\Rightarrow ca-db=ca+ab+b^2+bc\)

\(\Rightarrow ca-db=a\left(b+c\right)+b\left(b+c\right)\)

\(\Rightarrow ca-db=\left(b+c\right)\left(a+b\right)\left(3\right)\)

Thay (1) , (2) và (3) vào biểu thức ( ab - cd )( bc - da )( ca - db ) ta được:

\(\left(ab-cd\right)\left(bc-da\right)\left(ca-db\right)\)

\(=\left(a+c\right)\left(b+c\right)\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\)

\(=\left(a+c\right)^2.\left(b+c\right)^2.\left(a+b\right)^2\)

\(=\left[\left(a+c\right)\left(b+c\right)\left(a+b\right)\right]^2\)

Vậy với các số nguyên a, b, c, d thỏa mãn a + b + c + d = 0 thì ( ab - cd )( bc - da )( ca - db ) là số chính phương