HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(\dfrac{x+9y}{x^2-9y^2}-\dfrac{3y}{x^2+3xy}\)
\(=\dfrac{x+9y}{\left(x-3y\right)\left(x+3y\right)}-\dfrac{3y}{x\left(x+3y\right)}\)
\(=\dfrac{x\left(x+9y\right)-3y\left(x-3y\right)}{x\left(x-3y\right)\left(x+3y\right)}\)
\(=\dfrac{x^2-6xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}\)
\(=\dfrac{\left(x-3y\right)^2}{x\left(x-3y\right)\left(x+3y\right)}\)
\(=\dfrac{x-3y}{x\left(x+3y\right)}\)
\(D=\dfrac{2}{-x^2-7}=\dfrac{2}{-\left(x^2+7\right)}=\dfrac{-2}{x^2+7}\)
Ta có: x2 \(\ge0\forall x\)
Dấu ''='' xảy ra khi x2 = 0 ⇔ x = 0
Do đó: x2 + 7 \(\ge7>0\)
⇔ \(\dfrac{2}{x^2+7}\le\dfrac{2}{7}\)
⇔ \(\dfrac{-2}{x^2+7}\ge\dfrac{-2}{7}\)
Dấu ''='' xảy ra khi x = 0
Vậy Min D = \(\dfrac{-2}{7}\) tại x = 0
\(C=\dfrac{5}{x^2+6}\)
Ta có: \(x^2\ge0\forall x\)
Do đó: x2 + 6 \(\ge6>0\)
⇔ \(\dfrac{5}{x^2+6}\le\dfrac{5}{6}\)
Vậy Max C = \(\dfrac{5}{6}\) tại x = 0
a) -y2 + 2xy - x2 + 3x - 3y
= (3x - 3y) - (x2 - 2xy + y2)
= 3(x - y) - (x - y)2
= (x - y)(3 - x + y)
b) x3 - 2x2 - x + 2
= (x3 - x) - (2x2 - 2)
= x(x2 - 1) - 2(x2 - 1)
= (x2 - 1)(x - 2)
= (x - 2)(x - 1)(x + 1)
c) x2(x + 1) - 2x(x + 1) + x + 1
= (x + 1)(x2 - 2x + 1)
= (x + 1)(x - 1)2
d) a2 + b2 + 2a - 2b - 2ab
= (a2 - 2ab + b2) + (2a - 2b)
= (a - b)2 + 2(a - b)
= (a - b)(a - b + 2)
e) 4x2 - 8x + 3
= (4x2 - 2x) - (6x - 3)
= 2x(2x - 1) - 3(2x - 1)
= (2x - 1)(2x - 3)
f) 25 - 16x2
= 52 - (4x)2
= (5 - 4x)(5 + 4x)
a) (x3 + 8y3) : (2y + x)
= (x + 2y)(x2 - 2xy + 4y2) : (2y + x)
= x2 - 2xy + 4y2
b) (x3 + 3x2y + 3xy2 + y3) : (2x + 2y)
= (x + y)3 : 2(x + y)
= \(\dfrac{\left(x+y\right)^2}{2}\)
c) (6x5y2 - 9x4y3 + 15x3y4) : 3x3y2
= 3x3y2(2x2 - 3xy + 5y2) : 3x3y2
= 2x2 - 3xy + 5y2
10x(x - y) - 8 (y - x)
= 10x(x - y) + 8(x - y)
= (x - y)(10x + 8)
\(\dfrac{2x^3}{x^2-1}-\dfrac{6}{3-x}-\dfrac{2x-6}{\left(x^2-1\right)\left(x-3\right)}\)
\(=\dfrac{2x^3\left(x-3\right)}{\left(x^2-1\right)\left(x-3\right)}+\dfrac{6\left(x^2-1\right)}{\left(x^2-1\right)\left(x-3\right)}-\dfrac{2x-6}{\left(x^2-1\right)\left(x-3\right)}\)
\(=\dfrac{2x^4-6x^3+6x^2-6-2x+6}{\left(x^2-1\right)\left(x-3\right)}\)
\(=\dfrac{2x^4-6x^3+6x^2-2x}{\left(x^2-1\right)\left(x-3\right)}\)
nMg = \(\dfrac{2,4}{24}=0,1\left(mol\right)\)
PT: 2Mg + O2 ➝ 2MgO
mol 0,1 0,05 0,1
a) \(V_{O_2\left(đktc\right)}=0,05.22,4=1,12\left(l\right)\)
b) C1: \(m_{O_2}=0,05.32=1,6\left(g\right)\)
mMgO = 2,4 + 1,6 = 4 (g)
C2: mMgO = 0,1.40 = 4 (g)
pt vô số nghiệm \(\left(x;y\right)=\left(x;\frac{3x-35}{5}\right)\)
giải chi tiết cko mink đi. mink cần lắm