a) \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
\(=\left[\left(x-y\right)^3+\left(y-z\right)^3\right]+\left(z-x\right)^3\)
\(=\left[\left(x-y\right)+\left(y-z\right)\right]\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]+\left(z-x\right)^3\)
\(=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^3\)
\(=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(x-z\right)^2\right]\)
\(=\left(x-z\right)\left\{\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)\right]+\left[\left(y-z\right)^2-\left(x-z\right)^2\right]\right\}\)
\(=\left(x-z\right)\left[\left(x-y\right)\left(x-y-y+z\right)+\left(y-z-x+z\right)\left(y-z+x-z\right)\right]\)
\(=\left(x-z\right)\left[\left(x-y\right)\left(x-2y+z\right)+\left(y-x\right)\left(y-2z+x\right)\right]\)
\(=\left(x-z\right)\left[\left(x-y\right)\left(x-2y+z\right)-\left(x-y\right)\left(y-2z+x\right)\right]\)
\(=\left(x-z\right)\left[\left(x-y\right)\left(x-2y+z-y+2z-x\right)\right]\)
\(=\left(x-z\right)\left[\left(x-y\right)\left(x-2y+z-y+2z-x\right)\right]\)
\(=\left(x-z\right)\left[\left(x-y\right)\left(3z-3y\right)\right]\)
\(=3\left(x-z\right)\left(x-y\right)\left(z-y\right)\)
b) \(P=x^2-x-5\)
\(\Leftrightarrow P=x^2-x+\dfrac{1}{4}-\dfrac{21}{4}\)
\(\Leftrightarrow P=\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)-\dfrac{21}{4}\)
\(\Leftrightarrow P=\left(x-\dfrac{1}{2}\right)^2-\dfrac{21}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\)
Nên \(\left(x-\dfrac{1}{2}\right)^2-\dfrac{21}{4}\ge\dfrac{-21}{4}\)
Vậy GTNN của \(P=\dfrac{-21}{4}\) khi \(x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)