Học tại trường Chưa có thông tin
Đến từ Thừa Thiên Huế , Chưa có thông tin
Số lượng câu hỏi 2
Số lượng câu trả lời 1197
Điểm GP 341
Điểm SP 1119

Người theo dõi (244)

Đang theo dõi (10)

Trà Xanh
Akai Haruma
Học 24h

Câu trả lời:

a) \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=\left[\left(x-y\right)^3+\left(y-z\right)^3\right]+\left(z-x\right)^3\)

\(=\left[\left(x-y\right)+\left(y-z\right)\right]\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]+\left(z-x\right)^3\)

\(=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^3\)

\(=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(x-z\right)^2\right]\)

\(=\left(x-z\right)\left\{\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)\right]+\left[\left(y-z\right)^2-\left(x-z\right)^2\right]\right\}\)

\(=\left(x-z\right)\left[\left(x-y\right)\left(x-y-y+z\right)+\left(y-z-x+z\right)\left(y-z+x-z\right)\right]\)

\(=\left(x-z\right)\left[\left(x-y\right)\left(x-2y+z\right)+\left(y-x\right)\left(y-2z+x\right)\right]\)

\(=\left(x-z\right)\left[\left(x-y\right)\left(x-2y+z\right)-\left(x-y\right)\left(y-2z+x\right)\right]\)

\(=\left(x-z\right)\left[\left(x-y\right)\left(x-2y+z-y+2z-x\right)\right]\)

\(=\left(x-z\right)\left[\left(x-y\right)\left(x-2y+z-y+2z-x\right)\right]\)

\(=\left(x-z\right)\left[\left(x-y\right)\left(3z-3y\right)\right]\)

\(=3\left(x-z\right)\left(x-y\right)\left(z-y\right)\)

b) \(P=x^2-x-5\)

\(\Leftrightarrow P=x^2-x+\dfrac{1}{4}-\dfrac{21}{4}\)

\(\Leftrightarrow P=\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)-\dfrac{21}{4}\)

\(\Leftrightarrow P=\left(x-\dfrac{1}{2}\right)^2-\dfrac{21}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\)

Nên \(\left(x-\dfrac{1}{2}\right)^2-\dfrac{21}{4}\ge\dfrac{-21}{4}\)

Vậy GTNN của \(P=\dfrac{-21}{4}\) khi \(x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)