Rút gọn
a. \(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+x}{x-\sqrt{x}+1}+x+1\) với x > 0
b. \(\left(\dfrac{2+\sqrt{x}}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\left(\dfrac{x\sqrt{x}+x-\sqrt{x}-1}{\sqrt{x}}\right)\) với x > 0
Rút gọn
a. \(\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
b. \(\left(\sqrt{3}+1\right)\left(\sqrt{5}-1\right)\left(\sqrt{15}-1\right)\left(7-2\sqrt{3}+\sqrt{5}\right)\)
1. Tính
a. \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
b.\(\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
c.\(\dfrac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\)