Cho tam giác ABC có 3 góc nhọn và BC = a, AC = b, AB = c.
a) Chứng minh rằng \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)
b) Gọi AD là phân giác của góc BAC (D thuộc BC) kẻ BI vuông góc AD (I thuộc AD). Chứng minh rằng \(\sin\frac{\widehat{BAC}}{2}\le\frac{a}{b+c}\)