Học tại trường Chưa có thông tin
Đến từ Bình Phước , Chưa có thông tin
Số lượng câu hỏi 99
Số lượng câu trả lời 5480
Điểm GP 821
Điểm SP 3095

Người theo dõi (458)

Huy Jenify
Cao ngocduy Cao
cung kim ngưu
Nguyễn Trà My

Đang theo dõi (22)


Câu trả lời:

Ta có:

\(A=\frac{1}{x^2}+\frac{1}{y^2}=\frac{x^2+y^2}{\left(xy\right)^2}=\frac{x^2+y^2}{\left(x+y\right)^2}\)  (do  \(x+y=xy\))  \(\left(5\right)\)

Dễ dàng chứng minh được với mọi  \(x,y\in R\), ta luôn có:

\(\left(x+y\right)^2\le2\left(x^2+y^2\right)\)  \(\left(\text{*}\right)\)

Thật vậy, áp dụng bất đẳng thức Bunyakovsky cho hai bộ số  \(\left(1^2+1^2\right)\)  và  \(\left(x^2+y^2\right)\), ta được:

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(1.x+1.y\right)^2=\left(x+y\right)^2\)

Do đó,  \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\), hay  \(\left(x+y\right)^2\le2\left(x^2+y^2\right)\)  \(\left(đpcm\right)\)

Vậy, bất đẳng thức \(\left(\text{*}\right)\)  hiển nhiên đúng với mọi  \(x,y\in R\), tức bđt  \(\left(\text{*}\right)\)  được chứng minh.

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(\frac{1}{x}=\frac{1}{y}\)  \(\Leftrightarrow\)  \(x=y\)  

Khi đó,  từ  \(\left(\text{*}\right)\)  \(\Rightarrow\)  \(\frac{1}{\left(x+y\right)^2}\ge\frac{1}{2\left(x^2+y^2\right)}\)  (do  hai vế của bđt  \(\left(\text{*}\right)\)  cùng dấu  \(\left(+\right)\))

nên  \(\frac{x^2+y^2}{\left(x+y\right)^2}\ge\frac{x^2+y^2}{2\left(x^2+y^2\right)}=\frac{1}{2}\)  (vì  \(x^2+y^2>0\)  với mọi  \(x,y\in R\) và  \(x,y\ne0\))  \(\left(6\right)\)

\(\left(5\right);\)  \(\left(6\right)\)  \(\Rightarrow\)  \(A\ge\frac{1}{2}\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(^{x+y=xy}_{x=y}\)  \(\Leftrightarrow\)  \(x=y=2\)

Vậy,  GTNN của  \(A=\frac{1}{2}\)