C.90
Ta chứng minh bổ đề:\(a+b^2\le\dfrac{\left(a+b\right)^2}{a+1}\) ( mọi a> 0 )
\(\left(a+b\right)^2\le\left(a+b^2\right)\left(a+1\right)\left(\forall a>0\right)\)
BĐT \(\Leftrightarrow ab^2-2ab+a\ge0\)
\(\Leftrightarrow a\left(b-1\right)^2\ge0\) ( Đúng vì a>0 )
Từ đây suy ra \(\dfrac{1}{a+b^2}\le\dfrac{a+1}{\left(a+b\right)^2}\left(1\right)\)
Chứng minh tương tự ta cũng có: \(\dfrac{1}{b+a^2}\le\dfrac{b+1}{\left(b+a\right)^2}\left(2\right)\)
Cộng vế theo vế (1) và (2) ta được: \(\dfrac{1}{a+b^2}+\dfrac{1}{b+a^2}\le\dfrac{a+b+2}{\left(a+b\right)^2}\)
Vì \(a+b\ge2\) nên ta dự đoán \(\dfrac{a+b+2}{\left(a+b\right)^2}\le1\)
\(\Leftrightarrow\left(a+b\right)^2\ge a+b+2\) \(\Leftrightarrow\left(a+b\right)^2-\left(a+b\right)-2\ge0\)\(\)
\(\Leftrightarrow\left[\left(a+b\right)^2-2\left(a+b\right)\right]+\left[\left(a+b\right)-2\right]\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a+b-2\right)+\left(a+b-2\right)\ge0\)
\(\Leftrightarrow\left(a+b-2\right)\left(a+b+1\right)\ge0\) ( True ) vì a+b>= 2
\(\Rightarrow\dfrac{1}{a+b^2}+\dfrac{1}{b+a^2}\le\dfrac{a+b+2}{\left(a+b\right)^2}\le1\)
=> GTLN M = 1 Dấu "=" xảy ra khi a=b=1
Việc mò đc bất phụ cũng hơi mệt :D