Học tại trường Chưa có thông tin
Đến từ Bắc Giang , Chưa có thông tin
Số lượng câu hỏi 4
Số lượng câu trả lời 138
Điểm GP 35
Điểm SP 101

Người theo dõi (11)

Đang theo dõi (3)

cutycoca
Bình Tống
Hà Phương Ngô

Câu trả lời:

Bài 1:

A= \(4\sqrt{20}+2\sqrt{45}-8\sqrt{5}+2\sqrt{180}\)

= \(4\sqrt{4.5}+2\sqrt{9.5}-8\sqrt{5}+2\sqrt{36.5}\)

= \(8\sqrt{5}+6\sqrt{5}-8\sqrt{5}+12\sqrt{5}\)

= \(\left(8+6-8+12\right)\sqrt{5}\)

= \(18\sqrt{5}\)

B= \(\dfrac{1}{\sqrt{5}+\sqrt{7}}-\dfrac{1}{\sqrt{5}-\sqrt{7}}\)

= \(\dfrac{\left(\sqrt{5}-\sqrt{7}\right)-\left(\sqrt{5}+\sqrt{7}\right)}{\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{5}-\sqrt{7}\right)}\)

= \(\dfrac{\sqrt{5}-\sqrt{7}-\sqrt{5}-\sqrt{7}}{\sqrt{5^2}-\sqrt{7^2}}\)

= \(\dfrac{-2\sqrt{7}}{5-7}\)

= \(\dfrac{-2\sqrt{7}}{-2}\)

= \(\sqrt{7}\)

C= \(\sqrt{\dfrac{4+\sqrt{7}}{4-\sqrt{7}}}+\sqrt{\dfrac{4-\sqrt{7}}{4+\sqrt{7}}}\)

= \(\sqrt{\dfrac{\left(4+\sqrt{7}\right)^2}{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}}+\sqrt{\dfrac{\left(4-\sqrt{7}\right)^2}{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}}\)

= \(\sqrt{\dfrac{\left(4+\sqrt{7}\right)^2}{4^2-\sqrt{7^2}}}+\sqrt{\dfrac{\left(4-\sqrt{7}\right)^2}{4^2-\sqrt{7^2}}}\)

= \(\sqrt{\dfrac{\left(4+\sqrt{7}\right)^2}{9}}+\sqrt{\dfrac{\left(4-\sqrt{7}\right)^2}{9}}\)

= \(\dfrac{\sqrt{\left(4+\sqrt{7}\right)^2}}{\sqrt{9}}+\dfrac{\sqrt{\left(4-\sqrt{7}\right)^2}}{\sqrt{9}}\)

= \(\dfrac{\left|4+\sqrt{7}\right|}{3}+\dfrac{\left|4-\sqrt{7}\right|}{3}\)

= \(\dfrac{\left(4+\sqrt{7}\right)+\left(4-\sqrt{7}\right)}{3}\)

= \(\dfrac{8}{3}\)

D= \(\sqrt{5+\sqrt{21}}+\sqrt{5-\sqrt{21}}\)

\(\Rightarrow D^2=\left(\sqrt{5+\sqrt{21}}+\sqrt{5-\sqrt{21}}\right)^2\)

= \(\left(\sqrt{5+\sqrt{21}}\right)^2+2.\sqrt{5+\sqrt{21}}.\sqrt{5-\sqrt{21}}+\left(\sqrt{5-\sqrt{21}}\right)^2\)

= \(\left|5+\sqrt{21}\right|+2\sqrt{\left(5+\sqrt{21}\right)\left(5-\sqrt{21}\right)}+\left|5-\sqrt{21}\right|\)

= \(5+\sqrt{21}+2\sqrt{25-21}+5-\sqrt{21}\)

= \(10+2\sqrt{4}\)

= 10+4=14

Bài 2:

\(\sqrt{xy}+1+\sqrt{x}+\sqrt{y}\)

= \(\left(\sqrt{xy}+\sqrt{x}\right)+\left(\sqrt{y}+1\right)\)

= \(\sqrt{x}\left(\sqrt{y}+1\right)+\left(\sqrt{y}+1\right)\)

= \(\left(\sqrt{y}+1\right)\left(\sqrt{x}+1\right)\)