HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Sông Trường Giang ở Đông Á hay Đông Nam Á ?
Áp dụng bất đẳng thức Bunyakovsky cho \(2\) bộ \(3\) số thực \(\left(1+1+1\right)\) và \(\left(a+b+c\right)\). Ta có:
\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=\frac{9}{4}\)
\(\Rightarrow\) \(a^2+b^2+c^2\ge\frac{\frac{9}{4}}{3}=\frac{3}{4}\) \(\left(đpcm\right)\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(a=b=c=\frac{1}{2}\)
120 X 15 : 100 = 18