HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Hàm số y = x +3 có hệ số a= 1 ; b = 3
Hàm số y = -2/3x+2 có hệ số a' = -2/3 ; b' = 2
=> hàm số y = x+ 3 là hàm số đồng biến vì a > 0 ( 1>0)
:v
lộn tui viết sai
0,0219 mới đúng
ủng hộ nhé
Ta có:
\(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(\sqrt{2}-1\right)^2\)
\(\dfrac{2\left(\sqrt{x}-1\right)}{x\sqrt{x}-1}=\dfrac{2\left(\sqrt{\left(\sqrt{2}-1\right)^2}-1\right)}{\left(\sqrt{2}-1\right)^2\sqrt{\left(\sqrt{2}-1\right)^2}-1}\)
\(=\dfrac{2\left(\sqrt{2}-1-1\right)}{\left(\sqrt{2}-1\right)^3-1}\)
\(=\dfrac{2\left(\sqrt{2}-2\right)}{\left(\sqrt{2}-2\right)\left(2-2\sqrt{2}+1+\sqrt{2}-1+1\right)}\)
\(=\dfrac{2}{3-\sqrt{2}}=\dfrac{6+2\sqrt{2}}{7}\)
\(a,A=\left(\dfrac{x+3}{x-9}+\dfrac{1}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}\)
\(=\left(\dfrac{x+3+\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right).\dfrac{\sqrt{x}-3}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+3}.\dfrac{1}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
\(b,A=\dfrac{\sqrt{x}+3-2}{\sqrt{x}+3}=1-\dfrac{2}{\sqrt{x}+3}\)
Để A nguyên thì \(\sqrt{x}+3\inƯ\left(2\right)\)
\(\Rightarrow\sqrt{x}+3\in\left\{1;2\right\}\) ( vì \(x\ge0\) )
Với \(\sqrt{x}+3=1\)\(\Rightarrow\sqrt{x}=-2\) ( loại vì \(\sqrt{x}\ge0\) )
Với \(\sqrt{x}+3=2\) \(\Rightarrow\sqrt{x}=-1\) ( loại )
=> ......
con