Học tại trường Chưa có thông tin
Đến từ Chưa có thông tin , Chưa có thông tin
Số lượng câu hỏi 23
Số lượng câu trả lời 3229
Điểm GP 60
Điểm SP 2630

Người theo dõi (288)

9323
Minz Ank
Quỳnh Anh

Đang theo dõi (6)

Hàn Nhi
Quỳnh Anh
Minz Ank
Cô bé bọ cạp

Câu trả lời:

Tôi là giáo viên gia sư Toán cấp 1-2-3. Tôi có học trò lớp 6 hỏi bài toán gần giống bài này. Tôi có lời giải cho bài này như sau:

Gọi a là số tự nhiên cần tìm, thương a chia cho 8, 10, 15, 20 lần lượt là b, c, d, e.

Ta có đẳng thức: a = 8b + 5 = 10c + 7 = 15d + 12 = 20e + 17

Suy ra B(8) – 5 = B(10) – 7 = B(15) – 12 = B(20) – 17

Suy ra B(10) – B(8) = 2; B(15) – B(10) = 5; B(20) – B(15) = 5.

B(8) = {0; 8; 16; 30; 40;48; 56; 64; 72; 80; 88; 96; 104; 112; 120…}

B(10) = {0; 10; 20; 30; 40; 50; 60; 70; 80; 90; 100; 110; 120; 130; 140; 150; 160;…}

B(15) = {0; 15; 30; 45; 60; 75; 90; 105; 120; 135; 150; 165; …}

B(20) = {0; 20; 40; 60; 80; 100; 120; 140; 160; 180; 200; 220; 240; 260;…}

Để có B(10) – B(8) = 2 ta tìm được cặp 10 – 8; 90 – 88, …

Để có B(15) – B(10) = 5 ta tìm được cặp 15 – 10; 105 – 100, …

Để có B(20) – B(15) = 5 ta tìm được cặp 20 – 15; 80 – 75; 140-135, …

Tuy nhiên để cùng thỏa mãn B(8) – 5 = B(10) – 7 = B(15) – 12 = B(20) – 17 thì ta chọn ở B(8) số 8, ở B(10) số 10, ở B(15) số 15, ở B(20) số 20. Điều này có nghĩa là

8 – 5 = 10 – 7 = 15 – 12 = 20 – 17 = 3.

Con số 3 này gợi ý cho ta cộng thêm vào đẳng thức: a = 8b + 5 = 10c + 7 = 15d + 12 = 20e + 17 hai vế với 3 ta có: a + 3 = 8b + 5 + 3 = 10c + 7 + 3 = 15d + 12 + 3 = 20e + 17 + 3

Suy ra: a + 3 = 8(b + 1) = 10(c + 1) = 15(d + 1) = 20(e + 1)

Suy ra a + 3 chia hết cho 8, 10, 15, 20.

BCNN(8, 10, 15, 20) = 23.3.5 = 120

Suy ra a + 3 thuộc BC(120) = {0; 120; 240; 360; …; 4680; 4800; 4920;…}

Suy ra a thuộc {-3; 117; 237; 357; …; 4677; 4797; 4917;…}

Để a chia hết cho 41 thì chỉ có a = 4797 là thỏa mãn.

Vậy số tự nhiên a nhỏ nhất thỏa mãn điều kiện của bài toán là 4797.