cho hình thang cân ABCD(AB<CD); AB//CA và AB=AD. Hai đường thẳng AD và BC cắt nhau tại E. Biết ED=15cm, DC=10cm
a, CM: DB là tia phan giác của góc ADC
b, tính BE và BC
c, Đường thẳng song song với đáy AB cắt các đoạn thẳng AD, BC và đường chéo BD, AC lần lượt tại M, Q,N,P. Chứng minh: DNBD=CPAC
d, Chứng minh: MN=PQ
Cho tam giác ABC vuông tại A, đường cao AH.
a) Chứng minh: AHB đồng dạng với CAB
b) Chứng minh: 2 AH BH.CH
c) Từ H kẻ HM, HN lần lượt vuông góc với AB, AC tại M và N. Chứng minh: AMN đồng dạng với ACB
d) Kẻ đường thẳng AK vuông góc với MN tại K cắt BC tại I. Chứng minh: I là trung điểm của BC
Cho tam giác ABC vuông tại A, đường cao AH. a) Chứng minh: AHB đồng dạng với CAB b) Chứng minh: 2 AH BH.CH c) Từ H kẻ HM, HN lần lượt vuông góc với AB, AC tại M và N. Chứng minh: AMN đồng dạng với ACB d) Kẻ đường thẳng AK vuông góc với MN tại K cắt BC tại I. Chứng minh: I là trung điểm của BC
cho hình thang cân ABCD(AB<CD); AB//CA và AB=AD. Hai đường thẳng AD và BC cắt nhau tại E. Biết ED=15cm, DC=10cm
a, CM: DB là tia phan giác của góc ADC
b, tính BE và BC
c, Đường thẳng song song với đáy AB cắt các đoạn thẳng AD, BC và đường chéo BD, AC lần lượt tại M, Q,N,P. Chứng minh: \(\frac{DN}{BD}=\frac{CP}{AC}\)
d, Chứng minh: MN=PQ
Cho tam giác AOB có AB = 18cm; OA = 12cm; OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD = 3cm. Qua D kẻ đường thẳng song song với AB cắt tia AO ở C. Gọi F là giao điểm của AD và BC
a) Tính độ dài OC; CD
b) Chứng minh rằng FD.BC = FC.AD
c) Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N. Cm: OM = ON
Cho tam giác AOB có AB = 18cm; OA = 12cm; OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD = 3cm. Qua D kẻ đường thẳng song song với AB cắt tia AO ở C. Gọi F là giao điểm của AD và BC
a) Tính độ dài OC; CD
b) Chứng minh rằng FD.BC = FC.AD
c) Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N. Cm: OM = ON
Cho tam giác nhọn ABC, có AB = 12cm, AC = 15 cm. Trên các cạnh AB và AC lấy các điểm D và E sao cho AD = 4 cm, AE = 5cm
a, Chứng minh rằng: DE // BC, từ đó suy ra: ADE đồng dạng với ABC?
b, Từ E kẻ EF // AB (F thuộc BC). Tứ giác BDEF là hình gì? Từ đó suy ra: CEF đồng dạng EAD?
c, Tính CF và FB khi biết BC = 18 cm?
Cho tam giác ABC vuông tại b, đường cao BH.
a,CM: tam giác ABH đồng dạng với tam giác ACD suy ra \(^{AB^2}\)=AH.AC
b, tính AC, BH biết AB=6cm, BC=8cm
c, đường phân giác của góc CAB cắt BH và BC tại D và E. CM: DH.EC=EB.DB
d, gọi I, K lần lượt là hình chiếu của H lên AB và BC. CM:\(BH^3\)= AI.CK.AC