Rút gọn
\(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}\) -( \(\sqrt{x}-\sqrt{y}\))2
\(\sqrt{\frac{x-2\sqrt{x}}{x+2\sqrt{x}+1}}\) (x >_ 0)
\(\frac{x-1}{\sqrt{y}-1}\) . \(\sqrt{\frac{\left(2\sqrt{y}+1\right)^2}{\left(x-1\right)}}\) với x # 1, y# 1,y>0
\(\sqrt{\frac{\sqrt{a}-1}{\sqrt{b}+1}}\) : \(\sqrt{\frac{\sqrt{b}-1}{\sqrt{a}+1}}\) rồi tính giá trị với a= 7,25 b= 3,25
4x - \(\sqrt{8}\) + \(\sqrt{\frac{x^3+2x^2}{\sqrt{x+2}}}\) với x =- \(\sqrt{2}\)