1.Tìm số tự nhiên n để phân số\(\dfrac {7n-8}{2n-3}\) đạt giá trị lớn nhất
2.Cho đa thức p(x) = \(ax^{3}+bx^{2}+cx+d \) với a,b,c,d là các hệ số nguyên. Biết rằng, p(x) chia hết cho 5 với mọi x nguyên . Chứng minh rằng a,b,c,d đều chia hết cho 5
3.Gọi a,b,c là độ dài các cạnh của một tam giác. chứng minh rằng:\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b} <2\)
cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D ( D khác B, C). Trên tia đối của tia CB, lấy điểm E sao cho CE= BD. Đường vuông góc với BC kẻ từ D cắt AB tại M. Đường vuông góc với BC kẻ từ E cắt đường thẳng AC tại N, MN cắt BC tại I
1. Chứng minh DM= EN
2. Chứng minh IM=IN, BC<MN
3. Gọi O là giao của đường phân giác góc A và đường thẳng vuông góc với MN tại I. Chứng minh rằng tam giác BMO= tam giác CNO . Từ đó chứng minh O là điểm cố định