HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
+) Chứng minh: \(\frac{a}{b}>\frac{a+c}{b+d}\) (1)
Xét hiệu: \(\frac{a}{b}-\frac{a+c}{b+d}=\frac{a\left(b+d\right)-b\left(a+c\right)}{b\left(b+d\right)}=\frac{ab+ad-ab-bc}{b\left(b+d\right)}=\frac{ad-bc}{b\left(b+d\right)}\)
Vì a/b > c/d ; b; d > 0 => ad > bc => ad - bc > 0 .T a có b(b +d) > 0 nên Hiệu trên > 0 => \(\frac{a}{b}>\frac{a+c}{b+d}\)
+) Chứng minh: \(\frac{a+c}{b+d}>\frac{c}{d}\)
Xét hiệu: \(\frac{a+c}{b+d}-\frac{c}{d}=\frac{\left(a+c\right)d-c\left(b+d\right)}{b\left(b+d\right)}=\frac{ad-bc}{b.\left(b+d\right)}>0\)
=> \(\frac{a+c}{b+d}>\frac{c}{d}\) (2)
Từ (1)(2 ta có đpcm