Học tại trường Chưa có thông tin
Đến từ Quảng Ngãi , Chưa có thông tin
Số lượng câu hỏi 0
Số lượng câu trả lời 80
Điểm GP 25
Điểm SP 81

Người theo dõi (17)

Đang theo dõi (5)

katherina
_silverlining
Kuro Kazuya
Lê Nhất Duy
Akai Haruma

Câu trả lời:

Bài 1:

b) Ta có :\(P^2Q^2=\left(\dfrac{2xy}{x^2-y^2}.\dfrac{2xy}{x^2+y^2}\right)^2=\left(\dfrac{4x^2y^2}{x^4-y^4}\right)^2=\dfrac{16x^4y^4}{\left(x^4-y^4\right)^2}\)

\(P^2-Q^2=\left(\dfrac{2xy}{x^2-y^2}\right)^2-\left(\dfrac{2xy}{x^2+y^2}\right)^2=\dfrac{4x^2y^2}{\left(x^2-y^2\right)^2}-\dfrac{4x^2y^2}{\left(x^2+y^2\right)^2}=4x^2y^2\left(\dfrac{1}{\left(x^2-y^2\right)^2}-\dfrac{1}{\left(x^2+y^2\right)^2}\right)=4x^2y^2.\dfrac{\left(x^2+y^2\right)^2-\left(x^2-y^2\right)^2}{\left(x^2-y^2\right)^2\left(x^2+y^2\right)^2}=4x^2y^2.\dfrac{x^4+2x^2y^2+y^4-\left(x^4-2x^2y^2+y^4\right)}{\left(\left(x^2-y^2\right)\left(x^2+y^2\right)\right)^2}=4x^2y^2.\dfrac{4x^2y^2}{\left(x^4-y^4\right)^2}=\dfrac{16x^4y^4}{\left(x^4-y^4\right)^2}\)Do đó :\(\dfrac{P^2Q^2}{P^2-Q^2}=\dfrac{16x^4y^4}{\left(x^4-y^4\right)^2}\div\dfrac{16x^4y^4}{\left(x^4-y^4\right)^2}=1\)

Bài 2:

ĐKXĐ:\(x\ne0,x\ne10.x\ne-10\)

Đặt \(P=\left(\dfrac{5x+2}{x^2-10x}+\dfrac{5x-2}{x^2+10x}\right).\dfrac{x^2-100}{x^2+4}\)

Ta có :P\(=\left(\dfrac{5x+2}{x\left(x-10\right)}+\dfrac{5x-2}{x\left(x+10\right)}\right).\dfrac{\left(x-10\right)\left(x+10\right)}{x^2+4}\)

\(=\left(\dfrac{\left(5x+2\right)\left(x-10\right)+\left(5x-2\right)\left(x+10\right)}{x\left(x-10\right)\left(x+10\right)}\right).\dfrac{\left(x-10\right)\left(x+10\right)}{x^2+4}\)\(=\dfrac{5x^2-50x+2x-20+5x^2+50x-2x-20}{x\left(x-10\right)\left(x+10\right)}.\dfrac{\left(x-10\right)\left(x+10\right)}{x^2+4}\)\(=\dfrac{10x^2-40}{x\left(x-10\right)\left(x+10\right)}.\dfrac{\left(x-10\right)\left(x+10\right)}{x^2+4}\)

\(=\dfrac{10\left(x^2-4\right)}{x\left(x^2+4\right)}\)

Thay x=20040 ta được:\(P=\dfrac{10\left(20040^2-4\right)}{20040.\left(20040^2+4\right)}=\dfrac{20040^2-4}{2004\left(20040^2+4\right)}\)