Cho \(\left\{{}\begin{matrix}x,y,z>0\\x+2y+3z=3\end{matrix}\right.\)
Tìm MaxP biết:
\(P=\dfrac{88y^3-x^3}{2xy+16y^2}+\dfrac{297z^3-8y^3}{6yz+36z^2}+\dfrac{11x^3-27z^3}{3xz+4x^2}\)
Đặt 2y=a, 3z=b \(\Rightarrow x+a+b=3\)
\(\Rightarrow P=\dfrac{11a^3-x^3}{ax+4a^2}+\dfrac{11b^3-a^3}{ab+4b^2}+\dfrac{11x^3-b^3}{bx+4x^2}\)
Ta chứng minh bđt sau:
\(\dfrac{11a^3-x^3}{ax+4a^2}\le3a-x\Leftrightarrow11a^3-x^3\le\left(3a-x\right)\left(ax+4a^2\right)\Leftrightarrow11a^3-x^3\le12a^3+3a^2x-ax^2-4a^2x\Leftrightarrow a^3-a^2x-ax^2+x^3\ge0\Leftrightarrow a^2\left(a-x\right)-x^2\left(a-x\right)\ge0\Leftrightarrow\left(a-x\right)^2\left(a+x\right)\ge0\left(luondung\right)\)tương tự:
\(\dfrac{11x^3-b^3}{bx+4x^2}\le3x-b,\dfrac{11b^3-a^3}{ab+4b^2}\le3b-a\)
\(\Rightarrow P\le3\left(x+a+b\right)-\left(a+b+x\right)=2\left(a+b+x\right)=2.3=6\)
\(MaxP=6\Leftrightarrow x=1,y=\dfrac{1}{2},z=\dfrac{1}{3}\)