Học tại trường Chưa có thông tin
Đến từ Quảng Bình , Chưa có thông tin
Số lượng câu hỏi 24
Số lượng câu trả lời 1190
Điểm GP 555
Điểm SP 2825

Người theo dõi (807)

Đang theo dõi (1526)


Câu trả lời:

Bài 1:Giải:

Nếu \(n\) lẻ thì \(2n\equiv-1\) (\(mod\) \(3\))

Từ \(PT\Rightarrow z^2\equiv-1\) ( \(mod\) \(3\)) (loại)

Nếu \(n\) chẵn thì \(n=2m\left(m\in N\right)\)

\(PT\) trở thành:

\(z^2-2^{2m}=153\) Hay \(\left(z-2m\right)\left(z+2m\right)=153\)

\(\Rightarrow z+2m\)\(z-2m\inƯ\left(153\right)\)

\(\Leftrightarrow\) Ta tìm được: \(\left\{{}\begin{matrix}m=2\\z=13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}n=4\\z=13\end{matrix}\right.\)

Vậy \(\left(n;z\right)=\left(4;13\right)\)

Bài 2:

b) Theo đề bài ta có:

\(35\left(x+y\right)=210\left(x-y\right)=12x.y\)

Chia các tích trên cho \(BCNN\left(35;210;12\right)=420\) ta được:

\(\dfrac{35\left(x+y\right)}{420}=\dfrac{210\left(x-y\right)}{420}=\dfrac{12xy}{420}\)

Hay \(\dfrac{x+y}{12}=\dfrac{x-y}{2}=\dfrac{xy}{35}\left(1\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x+y}{12}=\dfrac{x-y}{2}=\dfrac{\left(x+y\right)+\left(x-y\right)}{12+2}=\dfrac{\left(x+y\right)-\left(x-y\right)}{12-2}\)

\(\Leftrightarrow\dfrac{x+y}{12}=\dfrac{x-y}{2}=\dfrac{x}{7}=\dfrac{y}{5}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\)

\(\Leftrightarrow\dfrac{xy}{35}=\dfrac{x}{7}=\dfrac{y}{5}=\dfrac{xy}{7y}=\dfrac{xy}{5x}\)

\(\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}7y=35\\5x=35\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=7\end{matrix}\right.\)

Vậy hai số nguyên dương \(x;y\)\(7;5\)