HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
a) Gọi D là điều kiện xác định của biểu thức vế trái D = [- 8; +∞]. Vế trái dương với mọi x ∈ D trong khi vế phải là số âm. Mệnh đề sai với mọi x ∈ D. Vậy bất phương trình vô nghiệm.
b) Vế trái có ≥ 1 ∀x ∈ R,
≥ 1 ∀x ∈ R
=> + ≥ 2 ∀x ∈ R.
Mệnh đề sai ∀x ∈ R. Bất phương trình vô nghiệm.
c) ĐKXĐ: D = [- 1; 1]. Vế trái âm với mọi x ∈ D trong khi vế phải dương.
a) ĐKXĐ: D = {x ∈ R/x ≠ 0 và x + 1 ≠ 0} = R\{0;- 1}.
b) ĐKXĐ: D = {x ∈ R/x2 - 4 ≠ 0 và x2 - 4x + 3 ≠ 0} = R\{±2; 1; 3}.
c) ĐKXĐ: D = R\{- 1}.
d) ĐKXĐ: D = {x ∈ R/x + 4 ≠ 0 và 1 - x ≥ 0} = (-∞; - 4) ∪ (- 4; 1].
a) 6x + < 4x + 7 <=> 6x - 4x < 7 - <=> x <
< 2x +5 <=> 4x - 2x < 5 - <=> x <
Tập nghiệm của hệ bất phương trình:
Y = ∩ = .
b) 15x - 2 > 2x + <=> x >
2(x - 4) < <=> x < 2
Tập nghiệm S = ∩ (-∞; 2) =