HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
AB = BC = CD = DA (gt)
AE = BK = CP = DQ (gt)
Suy ra: EB = KC = PD = QA
- Xét ∆ AEQ và ∆ BKE :
AE = BK (gt)
ˆ A = ˆ B = 90 0 A^=B^=900
QA = EB (chứng minh trên)
Do đó: ∆ AEQ = ∆ BKE (c.g.c) ⇒ EK = EQ (1)
- Xét ∆ BKE và ∆ CPK :
BK = CP (gt)
ˆ B = ˆ C = 90 0 B^=C^=900
EB = KC (chứng minh trên)
Do đó: ∆ BKE = ∆ CPK (c.g.c) ⇒ EK = KP (2)
Xét ∆ CPK và ∆ DQP :
CP = DQ (gt)
ˆ C = ˆ D = 90 0 C^=D^=900
DP = CK (chứng minh trên)
Do đó: ∆ CPK = ∆ DQP (c.g.c) ⇒ KP = PQ (3)
Từ (1), (2) và (3) suy ra: EK = KP = PQ = EQ
Tứ giác EKPQ là hình thoi.