HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Read and match (Đọc và điền vào chỗ trống.)
Ta có \(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)[\left(a+b\right)^2-c\left(a+b\right)+c^2]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-bc-ca+c^2-3ba\right)\)
hay \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Ta lại có \(a^3+b^3+c^3=3abc\) khi \(\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
khi a,b,c dương thì a+b+c ko thể =0 nên a=b=c
câu 2
a^4 + b^4 + c^4 + d^4 = 4abcd
<=> \(a^4-2a^2b^2+b^4+c^4-2c^2d^2+d^4+2a^2b^2-4abcd+2b^2d^2=0\)
<=> \(\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2+2\left(ab-cd\right)^2=0\)
<=> \(\left\{{}\begin{matrix}a^2=b^2\\c^2=d^2\\ab=cd\end{matrix}\right.\Leftrightarrow a=b=c=d\)
phân tích đa thức thành nhân t của mẫu va tử,rồi có nhân tử chung của mẫu và tử số là x2+x+1