*Cách 1: Hàng ngang:
P(x) - Q(x) = (5x\(^3\) - \(\dfrac{1}{3}\) + 7x\(^4\) + 8x\(^2\)) - (8x\(^2\) - 5x - 3x\(^3\) + x\(^4\) - \(\dfrac{2}{3}\))
= 5x\(^3\) - \(\dfrac{1}{3}\) + 7x\(^4\) + 8x\(^2\) - 8x\(^2\) + 5x + 3x\(^3\) - x\(^4\) +\(\dfrac{2}{3}\)
= (5x\(^3\) + 3x\(^3\)) + (-\(\dfrac{1}{3}\) + \(\dfrac{2}{3}\)) + (7x\(^4\) - x\(^4\)) + (8x\(^2\) - 8x\(^2\)) + 5x
= 8x\(^3\) + \(\dfrac{1}{3}\) + 6x\(^4\) + 5x
Vậy P(x) - Q(x) = 8x\(^3\) + \(\dfrac{1}{3}\) + 6x\(^4\) + 5x
*Cách 2: Hàng dọc:
P(x) = 7x\(^4\) + 5x\(^3\) + 8x\(^2\) + 0x - \(\dfrac{1}{3}\)
-
Q(x) = x\(^4\) - 3x\(^3\) + 8x\(^2\) - 5x - \(\dfrac{2}{3}\)
Hay: P(x) = 7x\(^4\) + 5x\(^3\) + 8x\(^2\) + 0x - \(\dfrac{1}{3}\)
+
[-Q(x)] = -x\(^4\) + 3x\(^3\) - 8x\(^2\) + 5x + \(\dfrac{2}{3}\)
___________________________________________
P(x) - Q(x) = 6x\(^4\) + 8x\(^3\) + 5x - \(\dfrac{1}{3}\)
Vậy P(x) - Q(x) = 6x\(^4\) + 8x\(^3\) + 5x - \(\dfrac{1}{3}\)